【分享】Llama-factory使用甄嬛传数据集微调 #122

Open
opened 2024-09-25 10:21:28 +08:00 by 11256832216cs · 0 comments

一、准备工作

Llama-factory安装(省略)

模型:LLaMA3-8B (在魔塔社区下载)

数据集下载地址:
https://github.com/datawhalechina/self-llm/blob/master/dataset/huanhuan.json

二、使用命令行直接开始训练

Llama-factory训练命令及参数设置如下:
‘’‘
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train
--stage sft
--do_train True
--model_name_or_path /home/liuyang/.cache/modelscope/hub/LLM-Research/Meta-Llama-3-8B-Instruct/
--adapter_name_or_path saves/LLaMA3-8B/lora/llama3_2024-05-23-11-02-02
--preprocessing_num_workers 16
--finetuning_type lora
--quantization_bit 4
--template llama3
--flash_attn auto
--dataset_dir data
--dataset huanhuan_zh
--cutoff_len 1024
--learning_rate 0.0001
--num_train_epochs 3.0
--max_samples 100000
--per_device_train_batch_size 4
--gradient_accumulation_steps 4
--lr_scheduler_type cosine
--max_grad_norm 1.0
--logging_steps 10
--save_steps 100
--warmup_steps 0
--optim adamw_torch
--packing False
--report_to none
--output_dir saves/LLaMA3-8B/lora/llama3_2024-05-23-11-02-02
--fp16 True
--plot_loss True
--lora_rank 8
--lora_alpha 32
--lora_dropout 0.1
--use_dora True
--lora_target all
’‘’

三、效果

收敛情况:
image

对话测试:
image
(收敛情况不是特别好,好在功能要求不高对话效果还可以)

## 一、准备工作 **Llama-factory安装(省略)** **模型:LLaMA3-8B (在魔塔社区下载)** **数据集下载地址:** https://github.com/datawhalechina/self-llm/blob/master/dataset/huanhuan.json ## 二、使用命令行直接开始训练 **Llama-factory训练命令及参数设置如下:** ‘’‘ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \ --stage sft \ --do_train True \ --model_name_or_path /home/liuyang/.cache/modelscope/hub/LLM-Research/Meta-Llama-3-8B-Instruct/ \ --adapter_name_or_path saves/LLaMA3-8B/lora/llama3_2024-05-23-11-02-02 \ --preprocessing_num_workers 16 \ --finetuning_type lora \ --quantization_bit 4 \ --template llama3 \ --flash_attn auto \ --dataset_dir data \ --dataset huanhuan_zh \ --cutoff_len 1024 \ --learning_rate 0.0001 \ --num_train_epochs 3.0 \ --max_samples 100000 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --max_grad_norm 1.0 \ --logging_steps 10 \ --save_steps 100 \ --warmup_steps 0 \ --optim adamw_torch \ --packing False \ --report_to none \ --output_dir saves/LLaMA3-8B/lora/llama3_2024-05-23-11-02-02 \ --fp16 True \ --plot_loss True \ --lora_rank 8 \ --lora_alpha 32 \ --lora_dropout 0.1 \ --use_dora True \ --lora_target all ’‘’ ## 三、效果 **收敛情况:** ![image](/attachments/067e2404-af4f-4f1c-9c39-2bbff050222e) **对话测试:** ![image](/attachments/ce6e90de-8bda-42d9-9f3e-73766b36f306) (收敛情况不是特别好,好在功能要求不高对话效果还可以)
Sign in to join this conversation.
No Milestone
No project
No Assignees
1 Participants
Notifications
Due Date
The due date is invalid or out of range. Please use the format 'yyyy-mm-dd'.

No due date set.

Dependencies

No dependencies set.

Reference: HswOAuth/llm_course#122
No description provided.