部署FastGPT并创建一个带知识库的聊天机器人【作业】 #162

Open
opened 2024-10-08 17:00:04 +08:00 by GANGUAGUA · 0 comments

一、安装Docker

#移除 Docker 相关的软件包和容器运行时
apt remove docker-ce docker-ce-cli containerd.io docker-compose-plugin docker docker-engine docker.io containerd runc

# 切换国内源
sed -i -r 's#http://(archive|security).ubuntu.com#https://mirrors.aliyun.com#g' /etc/apt/sources.list && apt update -y

### 安装docker
# 安装ca-certificates curl gnupg lsb-release
apt install ca-certificates curl gnupg lsb-release -y
#下载 Docker 的 GPG 密钥,并将其添加到 apt-key 中
curl -fsSL http://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | apt-key add -
# 为Docker 添加阿里源
add-apt-repository "deb [arch=amd64] http://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable"
# 更新系统的软件包
apt -y update
# 安装docker相关的包
apt install docker-ce docker-ce-cli containerd.io docker-compose-plugin -y

检查是否安装好Docker:

docker --version

二、下载 docker-compose

wget https://github.com/docker/compose/releases/download/v2.29.7/docker-compose-linux-x86_64

检查是否安装好 docker-compsoe:

docker compose version

三、部署FastGPT系统

创建fastgpt文件夹

mkdir fastgpt

确保转到fastgpt文件夹目录下

cd fastgpt

准备 docker-compose.yml 文件

输入vim编辑器常用命令对文件进行编辑

vim docker-compose.yml

i 进入插入模式,开始输入文本。将如下代码粘贴到文件中:

version: '3.3'
services:
  # db
  pg:
    #image: pgvector/pgvector:0.7.0-pg15 # docker hub
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.7.0 # 阿里云
    container_name: pg
    restart: always
    ports: # 生产环境建议不要暴露
      - 5432:5432
    networks:
      - fastgpt
    environment:
      # 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果
      - POSTGRES_USER=username
      - POSTGRES_PASSWORD=password
      - POSTGRES_DB=postgres
    volumes:
      - ./pg/data:/var/lib/postgresql/data
  mongo:
    #image: mongo:5.0.18 # dockerhub
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云
    # image: mongo:4.4.29 # cpu不支持AVX时候使用
    container_name: mongo
    restart: always
    ports:
      - 27017:27017
    networks:
      - fastgpt
    command: mongod --keyFile /data/mongodb.key --replSet rs0
    environment:
      - MONGO_INITDB_ROOT_USERNAME=myusername
      - MONGO_INITDB_ROOT_PASSWORD=mypassword
    volumes:
      - ./mongo/data:/data/db
    entrypoint:
      - bash
      - -c
      - |
        openssl rand -base64 128 > /data/mongodb.key
        chmod 400 /data/mongodb.key
        chown 999:999 /data/mongodb.key
        echo 'const isInited = rs.status().ok === 1
        if(!isInited){
          rs.initiate({
              _id: "rs0",
              members: [
                  { _id: 0, host: "mongo:27017" }
              ]
          })
        }' > /data/initReplicaSet.js
        # 启动MongoDB服务
        exec docker-entrypoint.sh "$$@" &

        # 等待MongoDB服务启动
        until mongo -u myusername -p mypassword --authenticationDatabase admin --eval "print('waited for connection')" > /dev/null 2>&1; do
          echo "Waiting for MongoDB to start..."
          sleep 2
        done

        # 执行初始化副本集的脚本
        mongo -u myusername -p mypassword --authenticationDatabase admin /data/initReplicaSet.js

        # 等待docker-entrypoint.sh脚本执行的MongoDB服务进程
        wait $$!

  # fastgpt
  sandbox:
    container_name: sandbox
    # image: ghcr.io/labring/fastgpt-sandbox:latest # git
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt-sandbox:latest # 阿里云
    networks:
      - fastgpt
    restart: always
  fastgpt:
    container_name: fastgpt
    # image: ghcr.io/labring/fastgpt:v4.8.8-fix2 # git
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.8.8-fix2 # 阿里云
    ports:
      - 3000:3000
    networks:
      - fastgpt
    depends_on:
      - mongo
      - pg
      - sandbox
    restart: always
    environment:
      # root 密码,用户名为: root。如果需要修改 root 密码,直接修改这个环境变量,并重启即可。
      - DEFAULT_ROOT_PSW=1234
      # AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。
      - OPENAI_BASE_URL=http://oneapi:3000/v1
      # AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)
      - CHAT_API_KEY=sk-fastgpt
      # 数据库最大连接数
      - DB_MAX_LINK=30
      # 登录凭证密钥
      - TOKEN_KEY=any
      # root的密钥,常用于升级时候的初始化请求
      - ROOT_KEY=root_key
      # 文件阅读加密
      - FILE_TOKEN_KEY=filetoken
      # MongoDB 连接参数. 用户名myusername,密码mypassword。
      - MONGODB_URI=mongodb://myusername:mypassword@mongo:27017/fastgpt?authSource=admin
      # pg 连接参数
      - PG_URL=postgresql://username:password@pg:5432/postgres
      # sandbox 地址
      - SANDBOX_URL=http://sandbox:3000
      # 日志等级: debug, info, warn, error
      - LOG_LEVEL=info
      - STORE_LOG_LEVEL=warn
    volumes:
      - ./config.json:/app/data/config.json

  # oneapi
  mysql:
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mysql:8.0.36 # 阿里云
    # image: mysql:8.0.36
    container_name: mysql
    restart: always
    ports:
      - 3306:3306
    networks:
      - fastgpt
    command: --default-authentication-plugin=mysql_native_password
    environment:
      # 默认root密码,仅首次运行有效
      MYSQL_ROOT_PASSWORD: oneapimmysql
      MYSQL_DATABASE: oneapi
    volumes:
      - ./mysql:/var/lib/mysql
  oneapi:
    container_name: oneapi
    # image: ghcr.io/songquanpeng/one-api:v0.6.7
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/one-api:v0.6.6 # 阿里云
    ports:
      - 3001:3000
    depends_on:
      - mysql
    networks:
      - fastgpt
    restart: always
    environment:
      # mysql 连接参数
      - SQL_DSN=root:oneapimmysql@tcp(mysql:3306)/oneapi
      # 登录凭证加密密钥
      - SESSION_SECRET=oneapikey
      # 内存缓存
      - MEMORY_CACHE_ENABLED=true
      # 启动聚合更新,减少数据交互频率
      - BATCH_UPDATE_ENABLED=true
      # 聚合更新时长
      - BATCH_UPDATE_INTERVAL=10
      # 初始化的 root 密钥(建议部署完后更改,否则容易泄露)
      - INITIAL_ROOT_TOKEN=fastgpt
    volumes:
      - ./oneapi:/data
networks:
  fastgpt:

Esc 键退出插入模式回到命令模式。最后,输入:wq 保存并退出

准备FastGPT配置文件config.json

同样使用vim编辑器对config.json文件进行编辑

vim config.json

i 进入插入模式,开始输入文本。将如下代码粘贴到文件中:

{
  "feConfigs": {
    "lafEnv": "https://laf.dev"
  },
  "systemEnv": {
    "vectorMaxProcess": 15,
    "qaMaxProcess": 15,
    "pgHNSWEfSearch": 100
  },
  "llmModels": [
    {
        "model": "llama-3.1-instruct",
        "name": "llama-3.1-instruct",
        "maxContext": 128000,
        "maxResponse": 128000,
        "quoteMaxToken": 32000,
        "maxTemperature": 1.2,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": false,
      "datasetProcess": false,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": false,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    },
    {
        "model": "qwen2-instruct",
        "name": "qwen2-instruct",
        "avatar": "/imgs/model/qwen.svg",
        "maxContext": 128000,
        "maxResponse": 128000,
        "quoteMaxToken": 32000,
        "maxTemperature": 1.2,
        "charsPointsPrice": 0,
        "censor": false,
        "vision": false,
        "datasetProcess": true,
        "usedInClassify": true,
        "usedInExtractFields": true,
        "usedInToolCall": true,
        "usedInQueryExtension": true,
        "toolChoice": false,
        "functionCall": false,
        "customCQPrompt": "",
        "customExtractPrompt": "",
        "defaultSystemChatPrompt": "",
        "defaultConfig": {}
    },
    {
        "model": "glm-4v",
        "name": "glm-4v",
        "avatar": "/imgs/model/chatglm.svg",
        "maxContext": 128000,
        "maxResponse": 128000,
        "quoteMaxToken": 32000,
        "maxTemperature": 1.2,
        "charsPointsPrice": 0,
        "censor": false,
        "vision": true,
        "datasetProcess": true,
        "usedInClassify": true,
        "usedInExtractFields": true,
        "usedInToolCall": true,
        "usedInQueryExtension": true,
        "toolChoice": true,
        "functionCall": false,
        "customCQPrompt": "",
        "customExtractPrompt": "",
        "defaultSystemChatPrompt": "",
        "defaultConfig": {}
    },
    {
        "model": "ERNIE-Speed-128K",
        "name": "ERNIE-Speed-128K",
	"avatar": "/imgs/model/ernie.svg",
        "maxContext": 128000,
        "maxResponse": 128000,
        "quoteMaxToken": 32000,
        "maxTemperature": 1.2,
        "charsPointsPrice": 0,
        "censor": false,
        "vision": false,
        "datasetProcess": true,
        "usedInClassify": true,
        "usedInExtractFields": true,
        "usedInToolCall": true,
        "usedInQueryExtension": true,
        "toolChoice": true,
        "functionCall": false,
        "customCQPrompt": "",
        "customExtractPrompt": "",
        "defaultSystemChatPrompt": "",
        "defaultConfig": {}
    },
    {
      "model": "gpt-4o-mini",
      "name": "gpt-4o-mini",
      "avatar": "/imgs/model/openai.svg",
      "maxContext": 125000,
      "maxResponse": 4000,
      "quoteMaxToken": 120000,
      "maxTemperature": 1.2,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": true,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    },
    {
      "model": "gpt-4o",
      "name": "gpt-4o",
      "avatar": "/imgs/model/openai.svg",
      "maxContext": 125000,
      "maxResponse": 4000,
      "quoteMaxToken": 120000,
      "maxTemperature": 1.2,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": false,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    }
  ],
  "vectorModels": [
    {
      "model": "m3e-base",
      "name": "m3e-base",
      "charsPointsPrice": 0,
      "defaultToken": 256,
      "maxToken": 512,
      "weight": 100,
      "defaultConfig": {},
      "dbConfig": {},
      "queryConfig": {}
    },
    {
      "model": "text-embedding-ada-002",
      "name": "Embedding-2",
      "avatar": "/imgs/model/openai.svg",
      "charsPointsPrice": 0,
      "defaultToken": 700,
      "maxToken": 3000,
      "weight": 100,
      "defaultConfig": {},
      "dbConfig": {},
      "queryConfig": {}
    },
    {
      "model": "text-embedding-3-large",
      "name": "text-embedding-3-large",
      "avatar": "/imgs/model/openai.svg",
      "charsPointsPrice": 0,
      "defaultToken": 512,
      "maxToken": 3000,
      "weight": 100,
      "defaultConfig": {
        "dimensions": 1024
      }
    },
    {
      "model": "embeding3",
      "name": "embeding3",
      "avatar": "/imgs/model/chatglm.svg",
      "charsPointsPrice": 0,
      "defaultToken": 512,
      "maxToken": 3000,
      "weight": 100
    }
  ],
  "reRankModels": [
    {
      "model": "bge-reranker-v2-m3",
      "name": "bge-reranker-v2-m3"
    }
  ],
  "audioSpeechModels": [
    {
      "model": "tts-1",
      "name": "OpenAI TTS1",
      "charsPointsPrice": 0,
      "voices": [
        { "label": "Alloy", "value": "alloy", "bufferId": "openai-Alloy" },
        { "label": "Echo", "value": "echo", "bufferId": "openai-Echo" },
        { "label": "Fable", "value": "fable", "bufferId": "openai-Fable" },
        { "label": "Onyx", "value": "onyx", "bufferId": "openai-Onyx" },
        { "label": "Nova", "value": "nova", "bufferId": "openai-Nova" },
        { "label": "Shimmer", "value": "shimmer", "bufferId": "openai-Shimmer" }
      ]
    }
  ],
  "whisperModel": {
    "model": "whisper-1",
    "name": "Whisper1",
    "charsPointsPrice": 0
  }
}

Esc 键退出插入模式回到命令模式。最后,输入:wq 保存并退出

启动系统

确保在fastgpt目录下执行如下命令启动系统

docker-compose up -d

检查系统启动情况:

docker-compose ps

如果系统成功启动,能看到状态都是Up:

 Name                Command               State                          Ports
------------------------------------------------------------------------------------------------------
fastgpt   sh -c node --max-old-space ...   Up      0.0.0.0:3000->3000/tcp,:::3000->3000/tcp
mongo     bash -c openssl rand -base ...   Up      0.0.0.0:27017->27017/tcp,:::27017->27017/tcp
mysql     docker-entrypoint.sh --def ...   Up      0.0.0.0:3306->3306/tcp,:::3306->3306/tcp, 33060/tcp
oneapi    /one-api                         Up      0.0.0.0:3001->3000/tcp,:::3001->3000/tcp
pg        docker-entrypoint.sh postgres    Up      0.0.0.0:5432->5432/tcp,:::5432->5432/tcp
sandbox   docker-entrypoint.sh node  ...   Up

并且查看fastgpt目录下的文件会出现 config.json, docker-compose.yml, mongo, myssql, oneapi, pg 这些文件夹。如果没有成功出现这些文件夹,应该是前面docker以及docker-compose没有下载好。

root@master01:/home/hsw/fastgpt# ls
config.json  docker-compose.yaml  mongo  mysql  oneapi  pg

四、在**OneAPI接入百度文心模型**

访问OneAPI地址

通过浏览器访问FastGPT:http://127.0.0.1:3001/并登陆(注意将127.0.0.1修改成自己服务器对应的IP地址)。

组件 访问方式(本机) 访问方式(远程服务器) 用户名密码
One API http://127.0.0.1:3001 http://{ip_address}:3001 用户名:root
密码:1234

准备百度文心一言模型

进入百度云控制台,然后进行账户注册,再进入百度智能云千帆大模型平台:

创建应用:

填入应用配置:

在 '模型管理' 里找到 ERNIE-Speed-128KERNIE-Speed-8K这两个服务,点击【免费开通】

添加One API渠道

点击 '渠道',输入 '类型' 以及 '名称',在 '模型' 里找到刚刚免费开通的两个模型 ERNIE-Speed-128K ERNIE-Speed-8K

回到百度文心的界面,在 '应用接入' 里找到API Key 以及 Secret Key,将这两个密钥按照复制粘贴到One API界面中的密钥里 (注意:这里的格式要求用 '|' 将两个密钥分开)

接下来点击 '提交' 即可。

测试渠道是否安装成功

回到渠道界面,点击测试按钮来测试OneAPI渠道是否成功

五、用FastGPT创建一个简易聊天应用

通过浏览器访问FastGPT:http://127.0.0.1:3000/并登陆(注意将127.0.0.1修改成自己服务器对应的IP地址)。

组件 访问方式(本机) 访问方式(远程服务器) 用户名密码
FastGPT http://127.0.0.1:3000 http://{ip_address}:3000 用户名:root
密码:1234

点击新建,选择简易应用

输入名称,选择简易机器人。

点击配置AI模型,这里AI模型选择ERNIE-Speed-128K, 注意将回复上线调整到4096以下,最后点击确认。

模型配置成功之后,在右上角点击发布应用。然后可以在工作台通过调试预览跟模型进行对话。

六、创建一个带知识库的聊天应用

创建知识库

首先进入到左边目录栏里的 '知识库' ,然后在右上角点击 '新建'。

知识库类别选择 '通用知识库' , 然后给知识库取名, 最后点击 '确认创建'

导入数据集中选择文本数据集

配置相关模型:

如果有本地文件,就选择【本地文本】,如果是复制文本粘贴过来的选择【自定义文本】, 这里我选择的是【自定义文本】

然后写入你的 '数据集名称' 以及 '数据集内容',然后点击 '下一步'

选择文本的拆分模式以及处理方式

处理完上面相关配置后, 可以在知识库的数据集里找到相关信息:

聊天应用添加知识库

通过左边目录栏回到 '工作台', 点击【关联知识库】

在这里可以找到刚刚创建的知识库, 选择并双击知识库

点击【参数】

可以选择知识库搜索匹配模式, 这里我选择的是【混合检索】, 可根据自己的需求进行选择

可以添加工具供大模型使用

询问大模型跟知识库相关的问题

## 一、安装Docker ```plain #移除 Docker 相关的软件包和容器运行时 apt remove docker-ce docker-ce-cli containerd.io docker-compose-plugin docker docker-engine docker.io containerd runc # 切换国内源 sed -i -r 's#http://(archive|security).ubuntu.com#https://mirrors.aliyun.com#g' /etc/apt/sources.list && apt update -y ### 安装docker # 安装ca-certificates curl gnupg lsb-release apt install ca-certificates curl gnupg lsb-release -y #下载 Docker 的 GPG 密钥,并将其添加到 apt-key 中 curl -fsSL http://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | apt-key add - # 为Docker 添加阿里源 add-apt-repository "deb [arch=amd64] http://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable" # 更新系统的软件包 apt -y update # 安装docker相关的包 apt install docker-ce docker-ce-cli containerd.io docker-compose-plugin -y ``` 检查是否安装好Docker: ```plain docker --version ``` ## 二、下载 docker-compose ```plain wget https://github.com/docker/compose/releases/download/v2.29.7/docker-compose-linux-x86_64 ``` 检查是否安装好 docker-compsoe: ```plain docker compose version ``` ## **<font style="color:#1a1a1a;">三、部署FastGPT系统</font>** ### 创建fastgpt文件夹 ```plain mkdir fastgpt ``` 确保转到fastgpt文件夹目录下 ```plain cd fastgpt ``` ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728370108917-1b2bb631-7d7e-45ed-b074-25447969d455.png) ### 准备 docker-compose.yml 文件 输入vim编辑器常用命令对文件进行编辑 ```plain vim docker-compose.yml ``` 按 **i** 进入插入模式,开始输入文本。将如下代码粘贴到文件中:</font> ```plain version: '3.3' services: # db pg: #image: pgvector/pgvector:0.7.0-pg15 # docker hub image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.7.0 # 阿里云 container_name: pg restart: always ports: # 生产环境建议不要暴露 - 5432:5432 networks: - fastgpt environment: # 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果 - POSTGRES_USER=username - POSTGRES_PASSWORD=password - POSTGRES_DB=postgres volumes: - ./pg/data:/var/lib/postgresql/data mongo: #image: mongo:5.0.18 # dockerhub image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云 # image: mongo:4.4.29 # cpu不支持AVX时候使用 container_name: mongo restart: always ports: - 27017:27017 networks: - fastgpt command: mongod --keyFile /data/mongodb.key --replSet rs0 environment: - MONGO_INITDB_ROOT_USERNAME=myusername - MONGO_INITDB_ROOT_PASSWORD=mypassword volumes: - ./mongo/data:/data/db entrypoint: - bash - -c - | openssl rand -base64 128 > /data/mongodb.key chmod 400 /data/mongodb.key chown 999:999 /data/mongodb.key echo 'const isInited = rs.status().ok === 1 if(!isInited){ rs.initiate({ _id: "rs0", members: [ { _id: 0, host: "mongo:27017" } ] }) }' > /data/initReplicaSet.js # 启动MongoDB服务 exec docker-entrypoint.sh "$$@" & # 等待MongoDB服务启动 until mongo -u myusername -p mypassword --authenticationDatabase admin --eval "print('waited for connection')" > /dev/null 2>&1; do echo "Waiting for MongoDB to start..." sleep 2 done # 执行初始化副本集的脚本 mongo -u myusername -p mypassword --authenticationDatabase admin /data/initReplicaSet.js # 等待docker-entrypoint.sh脚本执行的MongoDB服务进程 wait $$! # fastgpt sandbox: container_name: sandbox # image: ghcr.io/labring/fastgpt-sandbox:latest # git image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt-sandbox:latest # 阿里云 networks: - fastgpt restart: always fastgpt: container_name: fastgpt # image: ghcr.io/labring/fastgpt:v4.8.8-fix2 # git image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.8.8-fix2 # 阿里云 ports: - 3000:3000 networks: - fastgpt depends_on: - mongo - pg - sandbox restart: always environment: # root 密码,用户名为: root。如果需要修改 root 密码,直接修改这个环境变量,并重启即可。 - DEFAULT_ROOT_PSW=1234 # AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。 - OPENAI_BASE_URL=http://oneapi:3000/v1 # AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改) - CHAT_API_KEY=sk-fastgpt # 数据库最大连接数 - DB_MAX_LINK=30 # 登录凭证密钥 - TOKEN_KEY=any # root的密钥,常用于升级时候的初始化请求 - ROOT_KEY=root_key # 文件阅读加密 - FILE_TOKEN_KEY=filetoken # MongoDB 连接参数. 用户名myusername,密码mypassword。 - MONGODB_URI=mongodb://myusername:mypassword@mongo:27017/fastgpt?authSource=admin # pg 连接参数 - PG_URL=postgresql://username:password@pg:5432/postgres # sandbox 地址 - SANDBOX_URL=http://sandbox:3000 # 日志等级: debug, info, warn, error - LOG_LEVEL=info - STORE_LOG_LEVEL=warn volumes: - ./config.json:/app/data/config.json # oneapi mysql: image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mysql:8.0.36 # 阿里云 # image: mysql:8.0.36 container_name: mysql restart: always ports: - 3306:3306 networks: - fastgpt command: --default-authentication-plugin=mysql_native_password environment: # 默认root密码,仅首次运行有效 MYSQL_ROOT_PASSWORD: oneapimmysql MYSQL_DATABASE: oneapi volumes: - ./mysql:/var/lib/mysql oneapi: container_name: oneapi # image: ghcr.io/songquanpeng/one-api:v0.6.7 image: registry.cn-hangzhou.aliyuncs.com/fastgpt/one-api:v0.6.6 # 阿里云 ports: - 3001:3000 depends_on: - mysql networks: - fastgpt restart: always environment: # mysql 连接参数 - SQL_DSN=root:oneapimmysql@tcp(mysql:3306)/oneapi # 登录凭证加密密钥 - SESSION_SECRET=oneapikey # 内存缓存 - MEMORY_CACHE_ENABLED=true # 启动聚合更新,减少数据交互频率 - BATCH_UPDATE_ENABLED=true # 聚合更新时长 - BATCH_UPDATE_INTERVAL=10 # 初始化的 root 密钥(建议部署完后更改,否则容易泄露) - INITIAL_ROOT_TOKEN=fastgpt volumes: - ./oneapi:/data networks: fastgpt: ``` 按 **Esc** 键退出插入模式回到命令模式。最后,输入</font>`:wq`<font style="color:rgb(6, 6, 7);"> 保存并退出</font> <font style="color:rgb(6, 6, 7);"></font> ### <font style="color:rgb(6, 6, 7);">准备FastGPT配置文件config.json</font> <font style="color:rgb(6, 6, 7);">同样使用vim编辑器对config.json文件进行编辑</font> ```plain vim config.json ``` 按 **i** 进入插入模式,开始输入文本。将如下代码粘贴到文件中:</font> ```plain { "feConfigs": { "lafEnv": "https://laf.dev" }, "systemEnv": { "vectorMaxProcess": 15, "qaMaxProcess": 15, "pgHNSWEfSearch": 100 }, "llmModels": [ { "model": "llama-3.1-instruct", "name": "llama-3.1-instruct", "maxContext": 128000, "maxResponse": 128000, "quoteMaxToken": 32000, "maxTemperature": 1.2, "charsPointsPrice": 0, "censor": false, "vision": false, "datasetProcess": false, "usedInClassify": true, "usedInExtractFields": true, "usedInToolCall": true, "usedInQueryExtension": true, "toolChoice": false, "functionCall": false, "customCQPrompt": "", "customExtractPrompt": "", "defaultSystemChatPrompt": "", "defaultConfig": {} }, { "model": "qwen2-instruct", "name": "qwen2-instruct", "avatar": "/imgs/model/qwen.svg", "maxContext": 128000, "maxResponse": 128000, "quoteMaxToken": 32000, "maxTemperature": 1.2, "charsPointsPrice": 0, "censor": false, "vision": false, "datasetProcess": true, "usedInClassify": true, "usedInExtractFields": true, "usedInToolCall": true, "usedInQueryExtension": true, "toolChoice": false, "functionCall": false, "customCQPrompt": "", "customExtractPrompt": "", "defaultSystemChatPrompt": "", "defaultConfig": {} }, { "model": "glm-4v", "name": "glm-4v", "avatar": "/imgs/model/chatglm.svg", "maxContext": 128000, "maxResponse": 128000, "quoteMaxToken": 32000, "maxTemperature": 1.2, "charsPointsPrice": 0, "censor": false, "vision": true, "datasetProcess": true, "usedInClassify": true, "usedInExtractFields": true, "usedInToolCall": true, "usedInQueryExtension": true, "toolChoice": true, "functionCall": false, "customCQPrompt": "", "customExtractPrompt": "", "defaultSystemChatPrompt": "", "defaultConfig": {} }, { "model": "ERNIE-Speed-128K", "name": "ERNIE-Speed-128K", "avatar": "/imgs/model/ernie.svg", "maxContext": 128000, "maxResponse": 128000, "quoteMaxToken": 32000, "maxTemperature": 1.2, "charsPointsPrice": 0, "censor": false, "vision": false, "datasetProcess": true, "usedInClassify": true, "usedInExtractFields": true, "usedInToolCall": true, "usedInQueryExtension": true, "toolChoice": true, "functionCall": false, "customCQPrompt": "", "customExtractPrompt": "", "defaultSystemChatPrompt": "", "defaultConfig": {} }, { "model": "gpt-4o-mini", "name": "gpt-4o-mini", "avatar": "/imgs/model/openai.svg", "maxContext": 125000, "maxResponse": 4000, "quoteMaxToken": 120000, "maxTemperature": 1.2, "charsPointsPrice": 0, "censor": false, "vision": true, "datasetProcess": true, "usedInClassify": true, "usedInExtractFields": true, "usedInToolCall": true, "usedInQueryExtension": true, "toolChoice": true, "functionCall": false, "customCQPrompt": "", "customExtractPrompt": "", "defaultSystemChatPrompt": "", "defaultConfig": {} }, { "model": "gpt-4o", "name": "gpt-4o", "avatar": "/imgs/model/openai.svg", "maxContext": 125000, "maxResponse": 4000, "quoteMaxToken": 120000, "maxTemperature": 1.2, "charsPointsPrice": 0, "censor": false, "vision": true, "datasetProcess": false, "usedInClassify": true, "usedInExtractFields": true, "usedInToolCall": true, "usedInQueryExtension": true, "toolChoice": true, "functionCall": false, "customCQPrompt": "", "customExtractPrompt": "", "defaultSystemChatPrompt": "", "defaultConfig": {} } ], "vectorModels": [ { "model": "m3e-base", "name": "m3e-base", "charsPointsPrice": 0, "defaultToken": 256, "maxToken": 512, "weight": 100, "defaultConfig": {}, "dbConfig": {}, "queryConfig": {} }, { "model": "text-embedding-ada-002", "name": "Embedding-2", "avatar": "/imgs/model/openai.svg", "charsPointsPrice": 0, "defaultToken": 700, "maxToken": 3000, "weight": 100, "defaultConfig": {}, "dbConfig": {}, "queryConfig": {} }, { "model": "text-embedding-3-large", "name": "text-embedding-3-large", "avatar": "/imgs/model/openai.svg", "charsPointsPrice": 0, "defaultToken": 512, "maxToken": 3000, "weight": 100, "defaultConfig": { "dimensions": 1024 } }, { "model": "embeding3", "name": "embeding3", "avatar": "/imgs/model/chatglm.svg", "charsPointsPrice": 0, "defaultToken": 512, "maxToken": 3000, "weight": 100 } ], "reRankModels": [ { "model": "bge-reranker-v2-m3", "name": "bge-reranker-v2-m3" } ], "audioSpeechModels": [ { "model": "tts-1", "name": "OpenAI TTS1", "charsPointsPrice": 0, "voices": [ { "label": "Alloy", "value": "alloy", "bufferId": "openai-Alloy" }, { "label": "Echo", "value": "echo", "bufferId": "openai-Echo" }, { "label": "Fable", "value": "fable", "bufferId": "openai-Fable" }, { "label": "Onyx", "value": "onyx", "bufferId": "openai-Onyx" }, { "label": "Nova", "value": "nova", "bufferId": "openai-Nova" }, { "label": "Shimmer", "value": "shimmer", "bufferId": "openai-Shimmer" } ] } ], "whisperModel": { "model": "whisper-1", "name": "Whisper1", "charsPointsPrice": 0 } } ``` 按 **Esc** 键退出插入模式回到命令模式。最后,输入</font>`:wq`<font style="color:rgb(6, 6, 7);"> 保存并退出</font><font style="color:rgb(6, 6, 7);"></font> ### 启动系统 确保在fastgpt目录下执行如下命令启动系统 ```plain docker-compose up -d ``` 检查系统启动情况: ```plain docker-compose ps ``` 如果系统成功启动,能看到状态都是Up: ```plain Name Command State Ports ------------------------------------------------------------------------------------------------------ fastgpt sh -c node --max-old-space ... Up 0.0.0.0:3000->3000/tcp,:::3000->3000/tcp mongo bash -c openssl rand -base ... Up 0.0.0.0:27017->27017/tcp,:::27017->27017/tcp mysql docker-entrypoint.sh --def ... Up 0.0.0.0:3306->3306/tcp,:::3306->3306/tcp, 33060/tcp oneapi /one-api Up 0.0.0.0:3001->3000/tcp,:::3001->3000/tcp pg docker-entrypoint.sh postgres Up 0.0.0.0:5432->5432/tcp,:::5432->5432/tcp sandbox docker-entrypoint.sh node ... Up ``` 并且查看fastgpt目录下的文件会出现 config.json, docker-compose.yml, mongo, myssql, oneapi, pg 这些文件夹。如果没有成功出现这些文件夹,应该是前面docker以及docker-compose没有下载好。 ```plain root@master01:/home/hsw/fastgpt# ls config.json docker-compose.yaml mongo mysql oneapi pg ``` ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728370648809-56f60f8d-5fee-4fe3-b39c-63d449e2402e.png) ## 四、在**<font style="color:#1a1a1a;">OneAPI接入百度文心模型</font>** ### 访问OneAPI地址 <font style="color:#000000;">通过浏览器访问FastGPT:http://127.0.0.1:3001/并登陆(</font><font style="color:#000000;background-color:#fff67a;">注意将127.0.0.1修改成自己服务器对应的IP地址</font><font style="color:#000000;">)。</font> | 组件 | 访问方式(本机) | 访问方式(远程服务器) | 用户名密码 | | --- | --- | --- | --- | | One API | <font style="color:#333333;">http://127.0.0.1:3001</font> | <font style="color:#333333;">http://{ip_address}:3001</font> | <font style="color:#333333;">用户名:root</font><br/><font style="color:#333333;">密码:1234</font> | ### **<font style="color:#1a1a1a;">准备百度文心一言模型</font>** 进入[百度云控制台](https://login.bce.baidu.com/?redirect=https%3A%2F%2Fconsole.bce.baidu.com%2F),然后进行账户注册,<font style="color:#000000;">再进入</font><font style="color:#000000;background-color:#eff0f1;">百度智能云千帆大模型平台:</font>![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728380732866-dcbe7eb8-6c6a-4729-a17f-e6feadcc37a9.png) 创建应用: ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728380784404-27487c71-8444-4236-b3c1-2cdde87f50a3.png) <font style="color:#000000;">填入应用配置:</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728380823619-43ad5904-8eea-4f15-a456-c3b0d3e94ba2.png) 在 '模型管理' 里找到 **<font style="color:#000000;">ERNIE-Speed-128K</font>**<font style="color:#000000;">和</font>**<font style="color:#000000;">ERNIE-Speed-8K</font>**<font style="color:#000000;">这两个服务,点击【免费开通】</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728380890324-42098b2d-1ddf-4d0e-aa79-c8148682991d.png) ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728380910270-3e4da307-1fa2-4abb-9d62-0689101f7203.png) ### 添加One API渠道 点击 '渠道',输入 '类型' 以及 '名称',在 '模型' 里找到刚刚免费开通的两个模型 **<font style="color:#000000;">ERNIE-Speed-128K </font>**<font style="color:#000000;">和 </font>**<font style="color:#000000;">ERNIE-Speed-8K</font>** ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728381248192-75788c44-7c00-4b70-a73b-3f2686401bc9.png) 回到百度文心的界面,在 '应用接入' 里找到API Key 以及 Secret Key,将这两个密钥按照复制粘贴到One API界面中的密钥里 (注意:这里的格式要求用 '|' 将两个密钥分开) ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728381091617-5cf54d28-bde2-4f75-9a51-86e7399b71c8.png) 接下来点击 '提交' 即可。 ### 测试渠道是否安装成功 <font style="color:#000000;">回到</font><font style="color:#000000;background-color:#eff0f1;">渠道</font><font style="color:#000000;">界面,点击</font><font style="color:#000000;background-color:#eff0f1;">测试</font><font style="color:#000000;">按钮来测试OneAPI渠道是否成功</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728381673493-40979b4d-3530-4e59-8fd5-dec768cdcf27.png) ## 五、用FastGPT创建一个简易聊天应用 <font style="color:#000000;">通过浏览器访问FastGPT:http://127.0.0.1:3000/并登陆(</font><font style="color:#000000;background-color:#fff67a;">注意将127.0.0.1修改成自己服务器对应的IP地址</font><font style="color:#000000;">)。</font> | 组件 | 访问方式(本机) | 访问方式(远程服务器) | 用户名密码 | | --- | --- | --- | --- | | FastGPT | <font style="color:#333333;">http://127.0.0.1:3000</font> | <font style="color:#333333;">http://{ip_address}:3000</font> | <font style="color:#333333;">用户名:root</font><br/><font style="color:#333333;">密码:1234</font> | <font style="color:#000000;">点击</font><font style="color:#000000;background-color:#eff0f1;">新建</font><font style="color:#000000;">,选择</font><font style="color:#000000;background-color:#eff0f1;">简易应用</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728371284720-f43760d4-a813-4d4c-9b01-e76591c50d93.png) <font style="color:#000000;">输入名称,选择</font><font style="color:#000000;background-color:#eff0f1;">简易机器人</font><font style="color:#000000;">。</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373634048-97cf3d9b-48c2-41a4-89a7-0517a45af966.png) <font style="color:#000000;">点击</font><font style="color:#000000;background-color:#eff0f1;">配置AI模型</font><font style="color:#000000;">,这里</font><font style="color:#000000;background-color:#eff0f1;">AI模型</font><font style="color:#000000;">选择ERNIE-Speed-128K, 注意将</font><font style="color:#000000;background-color:#eff0f1;">回复上线</font><font style="color:#000000;">调整到4096以下,最后点击</font><font style="color:#000000;background-color:#eff0f1;">确认</font><font style="color:#000000;">。</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373527189-5549379c-b7a3-49dd-bdb7-905116850bf7.png) <font style="color:#000000;">模型配置成功之后,在右上角点击</font><font style="color:#000000;background-color:#eff0f1;">发布</font><font style="color:#000000;">应用。然后可以在</font><font style="color:#000000;background-color:#eff0f1;">工作台</font><font style="color:#000000;">通过</font><font style="color:#000000;background-color:#eff0f1;">调试预览</font><font style="color:#000000;">跟模型进行对话。</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373651629-2055f12d-a4a9-4f8a-971f-eea464ad47ff.png) ## 六、创建一个带知识库的聊天应用 ### 创建知识库 首先进入到左边目录栏里的 '知识库' ,然后在右上角点击 '新建'。 ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728374656961-82dcc127-0b9b-4785-acd0-4b02889ee34a.png) 知识库类别选择 '通用知识库' , 然后给知识库取名, 最后点击 '确认创建' ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373664090-5a95f778-09b1-4e29-9708-f134df31d711.png) <font style="color:#333333;">导入数据集中选择文本数据集</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728375709883-a388970b-bc62-4032-a82a-766f9947e8cf.png) <font style="color:#333333;">配置相关模型:</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728375734193-26ec4e18-53db-4b98-b28d-e3f1084ecd48.png) <font style="color:#333333;">如果有本地文件,就选择【本地文本】,如果是复制文本粘贴过来的选择【自定义文本】, 这里我选择的是【自定义文本】</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728375755765-72b3fc86-8435-4679-b227-bbb7ffe2b705.png) 然后写入你的 '数据集名称' 以及 '数据集内容',然后点击 '下一步' ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373679295-be3d72f6-2f03-4b22-85f4-141f50596b98.png) 选择文本的拆分模式以及处理方式 ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373689577-3acc4483-9784-4384-9ffc-413b15d070af.png) 处理完上面相关配置后, 可以在知识库的数据集里找到相关信息: ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373722052-8d953ed8-9b10-494f-a9c1-59378eb34e9a.png) ### 聊天应用添加知识库 通过左边目录栏回到 '工作台', <font style="color:#333333;">点击【关联知识库】</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728376062369-710819bc-aa68-4823-a2f5-2f22f56279f3.png) 在这里可以找到刚刚创建的知识库, 选择并双击知识库 ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373739502-daace306-e6ca-4603-a5e6-f05e30ee24fa.png) <font style="color:#333333;">点击【参数】</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728376238398-18e49194-cc01-4d8d-b180-63fe4066b0b1.png) <font style="color:#333333;">可以选择知识库搜索匹配模式, 这里我选择的是【混合检索】, 可根据自己的需求进行选择</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373751541-e08dfdbc-e3a7-4769-9387-04172a35b9d0.png) <font style="color:#333333;">可以添加工具供大模型使用</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373770986-c58070a7-ad61-44d5-8cb9-2f19cfbee2e1.png) <font style="color:#333333;">询问大模型跟知识库相关的问题</font> ![](https://cdn.nlark.com/yuque/0/2024/png/48118617/1728373806874-95e425c1-ec41-45d4-9bcc-2ae7aca2bba9.png)
Sign in to join this conversation.
No Milestone
No project
No Assignees
1 Participants
Notifications
Due Date
The due date is invalid or out of range. Please use the format 'yyyy-mm-dd'.

No due date set.

Dependencies

No dependencies set.

Reference: HswOAuth/llm_course#162
No description provided.